Friday, January 18, 2019

trafo

Pengertian Transformator (Trafo) dan Prinsip kerjanya – Hampir setiap rumah di Kota maupun Desa dialiri listrik yang berarus 220V di Indonesia. Dengan adanya arus 220V ini, kita dapat menikmati serunya drama Televisi, terangnya Cahaya Lampu Pijar maupun Lampu Neon,  mengisi ulang handphone dan juga menggunakan peralatan dapur lainnya seperti Kulkas, Rice Cooker, Mesin Cuci dan Microwave Oven. Arus listrik 220V ini merupakan jenis arus bolak-balik (AC atau Alternating Current) yang berasal dari Perusahaan Listrik yaitu PLN. Tegangan listrik yang dihasilkan oleh  PLN pada umumnya dapat mencapai puluhan hingga ratusan kilo Volt dan kemudian diturunkan menjadi 220V seperti yang kita gunakan sekarang dengan menggunakan sebuah alat yang dinamakan Transformator. Transformator disebut juga dengan Transformer.
Baca juga : Pengertian Efisiensi Trafo (Transformator) dan Cara Menghitungnya.

Pengertian Transformator (Trafo)

Transformator atau sering disingkat dengan istilah Trafo adalah suatu alat listrik yang dapat mengubah taraf suatu tegangan AC ke taraf yang lain. Maksud dari pengubahan taraf tersebut diantaranya seperti menurunkan Tegangan AC dari 220VAC ke 12 VAC ataupun menaikkan Tegangan dari 110VAC ke 220 VAC.  Transformator atau Trafo ini bekerja berdasarkan prinsip Induksi Elektromagnet dan hanya dapat bekerja pada tegangan yang berarus bolak balik (AC).Transformator (Trafo) memegang peranan yang sangat penting dalam pendistribusian tenaga listrik. Transformator menaikan listrik yang berasal dari pembangkit listrik PLN hingga ratusan kilo Volt untuk di distribusikan, dan kemudian Transformator lainnya menurunkan tegangan listrik tersebut ke tegangan yang diperlukan oleh setiap rumah tangga maupun perkantoran yang pada umumnya menggunakan Tegangan AC 220Volt.

Bentuk dan Simbol Transformator (Trafo)

Berikut ini adalah gambar bentuk dan simbol Transformator :
Pengertian transformator (bentuk dan simbol trafo)

Prinsip Kerja Transformator (Trafo)

Sebuah Transformator yang sederhana pada dasarnya terdiri dari 2 lilitan atau kumparan kawat yang terisolasi yaitu kumparan primer dan kumparan sekunder. Pada kebanyakan Transformator, kumparan kawat terisolasi ini dililitkan pada sebuah besi yang dinamakan dengan Inti Besi (Core).  Ketika kumparan primer dialiri arus AC (bolak-balik) maka akan menimbulkan medan magnet atau fluks magnetik disekitarnya. Kekuatan Medan magnet (densitas Fluks Magnet) tersebut dipengaruhi oleh besarnya arus listrik yang dialirinya. Semakin besar arus listriknya semakin besar pula medan magnetnya. Fluktuasi medan magnet yang terjadi di sekitar kumparan pertama (primer) akan menginduksi GGL (Gaya Gerak Listrik) dalam kumparan kedua (sekunder) dan akan terjadi pelimpahan daya dari kumparan primer ke kumparan sekunder. Dengan demikian, terjadilah pengubahan taraf tegangan listrik baik dari tegangan rendah menjadi tegangan yang lebih tinggi maupun dari tegangan tinggi menjadi tegangan yang rendah.
Sedangkan Inti besi pada Transformator atau Trafo pada umumnya adalah kumpulan lempengan-lempengan besi tipis yang terisolasi dan ditempel berlapis-lapis dengan kegunaanya untuk mempermudah jalannya Fluks Magnet yang ditimbulkan oleh arus listrik kumparan serta untuk mengurangi suhu panas yang ditimbulkan.
Beberapa bentuk lempengan besi yang membentuk Inti Transformator tersebut diantaranya seperti :
  • E – I Lamination
  • E – E Lamination
  • L – L Lamination
  • U – I Lamination
Dibawah ini adalah Fluks pada Transformator :Fluks Magnet Transformator
Rasio lilitan pada kumparan sekunder terhadap kumparan primer menentukan rasio tegangan pada kedua kumparan tersebut. Sebagai contoh, 1 lilitan pada kumparan primer dan 10 lilitan pada kumparan sekunder akan menghasilkan tegangan 10 kali lipat dari tegangan input pada kumparan primer. Jenis Transformator ini biasanya disebut dengan Transformator Step Up. Sebaliknya, jika terdapat 10 lilitan pada kumparan primer dan 1 lilitan pada kumparan sekunder, maka tegangan yang dihasilkan oleh Kumparan Sekunder adalah 1/10 dari tegangan input pada Kumparan Primer. Transformator jenis ini disebut dengan Transformator Step Down.

Dioda

Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.

Komponen Dioda

gambar dioda dan komponennya
Gambar dioda, simbol, dan komponennya
Struktur utama dioda adalah dua buah kutub elektroda berbahan konduktor yang masing-masing terhubung dengan semikonduktor silikon jenis p dan silikon jenis n. Anoda adalah elektroda yang terhubung dengan silikon jenis p dimana elektron yang terkandung lebih sedikit, dan katoda adalah elektroda yang terhubung dengan silikon jenis n dimana elektron yang terkandung lebih banyak. Pertemuan antara silikon n dan silikon p akan membentuk suatu perbatasan yang disebut P-N Junction.
Material semikonduktor yang digunakan umumnya berupa silikon atau germanium. Adapun semikonduktor jenis p diciptakan dengan menambahkan material yang memiliki elektron valensi kurang dari 4 (Contoh: Boron) dan semikonduktor jenis n diciptakan dengan menambahkan material yang memiliki elektro valensi lebih dari 4 (Contoh: Fosfor).

Cara Kerja Dioda

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

Kondisi tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.

cara kerja dioda

Kondisi tegangan positif (Forward-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
dioda tanpa tegangan

Kondisi tegangan negatif (Reverse-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
kondisi tegangan negatif

Jenis-jenis Dioda dan Fungsi Dioda

Dioda dibedakan menjadi beberapa jenis berdasarkan karakteristik dan fungsinya. Jenis-jenis dioda dan aplikasinya adalah sebagai berikut.
  • PN Junction Diode: Dioda standar yang terdiri dari susunan PN dan memiliki cara kerja seperti yang dijelaskan sebelumnya. Dioda jenis ini adalah diode yang umum digunakan di pasaran (disebut juga diode generik), digunakan terutama sebagai penyearah arus.
  • Light Emitting Diode (LED): Saat dialiri arus forward-bias, LED akan mengeluarkan cahaya. LED saat ini umum digunakan sebagai alat penerangan dan beberapa jenis digunakan untuk menggantikan lampu fluorescent.
  • Laser Diode: Dioda jenis laser juga menghasilkan cahaya, namun cahaya yang dihasilkan adalah cahaya koheren. Aplikasi diode laser adalah perangkat pembaca CD dan DVD dan laser pointer.
  • Photodiode: Photodiode dapat menghasilkan energi listrik apabila daerah PN junction disinari. Umumnya photodiode dioperasikan dalam reverse-bias, sehingga arus yang kecil akibat cahaya dapat langsung terdeteksi. Photodiode digunakan untuk mendeteksi cahaya (photodetector).
  • Gunn Diode: Gunn Diode adalah jenis diode yang tidak memiliki PN Junction, melainkan hanya terdiri dari dua elektroda. Dioda jenis ini dapat digunakan untuk menghasilkan sinyal gelombang mikro.
  • BARITT Diode: BARITT (Barrier Injection Transit Time) Diode adalah jenis diode yang bekerja dengan prinsip emisi termionik. Dioda ini digunakan untuk memproduksi sinyal gelombang mikro dengan level derau yang rendah.
  • Tunnel Diode: Tunnel Diode adalah dioda yang bekerja memanfaatkan salah satu fenomena mekanika kuantum yaitu tunneling. Tunnel junction digunakan sebagai salah satu komponen pada osilator, penguat, atau pencampur sinyal, terutama karena kecepatannya bereaksi terhadap perubahan tegangan.
  • Backward Diode: Backward diode memiliki karakteristik serupa dengan tunnel, perbedannya terletak pada adanya sisi yang diberi doping lebih rendah dibanding sisi yang berlawanan. Perbedaan profil doping ini membuat backward diode memiliki karakteristik tegangan-arus yang serupa pada kondisi reverse dan forward.
  • PIN Diode: Pada dioda PIN, terdapat area semikonduktor intrinsic (tanpa doping) yang diletakkan antara P dan N junction. Efek dari penambahan area intrinsic tersebut adalah melebarnya area deplesi yang membatasi pergerakan elektron, dan hal ini tepat digunakan untuk aplikasi pensinyalan (switching).
  • Schottky Diode: Pada Schottky diode diberikan tambahan metal pada cuplikan permukaan bagian tengah semikonduktor. Karakteristik yang menjadi keunggulan dioda ini adalah tegangan aktivasi yang rendah dan waktu pemulihan yang singkat. Dioda ini sangat umum digunakan untuk rangkaian elektronik berfrekuensi tinggi, seperti perangkat-perangkat radio dan gerbang logika.
  • Step Recovery Diode: Bagian semikonduktor pada dioda ini memiliki level doping yang secara gradual menurun dengan titik terendah di junction. Modifikasi ini dapat mengurangi waktu switching karena muatan yang ada pada daerah junction lebih sedikit. Aplaikasi dari semikonduktor ini adalah pada alat-alat elektronik frekuensi radio.
  • Varactor Diode: Diaplikasikan pada mode reverse biasa dengan lapisan penghalang yang dapat berubah-ubah sesuai tegangan diberikan. Hal ini membuat dioda ini seolah-olah merupakan suatu kapasitor.
  • Zener diode: Memiliki karakteristik khusus yang mengingkan efek breakdown saat reverse bias Dioda ini dapat menghasilkan tegangan yang tetap dan umum digunakan sebagai penghasil tegangan referensi di rangkaian elektronik.

kapasitor

Kapasitor adalah sebuah benda yang dapat menyimpan muatan listrik. Benda ini terdiri dari dua pelat konduktor yang dipasang berdekatan satu sama lain tapi tidak sampai bersentuhan. Benda ini dapat menyimpan tenaga listrik dan dapat menyalurkannya kembali, kegunaannya dapat kamu temukan seperti pada lampu flash pada camera, juga banyak dipakai pada papan sirkuit elektrik pada komputer yang kamu pakai maupun pada berbagai peralatan elektronik.
Kapasitor [C] gambaran sederhananya terdiri dari dua keping sejajar yang memiliki luasan [A] dan dipisahkan dengan jarak yang sempit sejauh [d]. Seringkali kedua keping tersebut digulung menjadi silinder dengan sebuah insulator atau kertas sebagai pemisah kedua keping. Pada gambar rangkaian listrik, simbolnya dinotasikan dengan:
simbol kondensator [Simbol]
Berbagai tipe kapasitor, (kiri) keping sejajar, (tengah) silindris, (kanan) gambar beberapa contoh asli yang digunakan pada peralatan elektronik.
Mau diskon 40% paket RuangGuru? WA: 0813 7693 4946
gambar kondensator[Sumber: Douglas C. Giancoli, 2005]
Perlu kamu ketahui bahwa walaupun memiliki fungsi yang hampir sama, namun baterai berbeda dengan kapasitor. Kapasitor berfungsi hanya sebagai penyimpan muatan listrik sementara, sedangkan baterai selain juga dapat menyimpan muatan listrik, baterai juga merupakan salah satu sumber tegangan listrik. Karena baterai perbedaan itu, baterai juga memiliki simbol yang berbeda pada rangkaian listrik. Simbol baterai dinotasikan dengan:
simbol baterai[Simbol baterai]
Contoh penggunaan kedua simbol tersebut pada rangkaian listrik:
simbol baterai rangkaian listrik
Kamu dapat mencari nilai kapasitas atau kapasitansi suatu kapasitor, yakni jumlah muatan listrik yang tersimpan. Untuk bentuk paling umum yaitu keping sejajar, persamaan kapasitansi dinotasikan dengan:
C = \frac{Q}{V}
Dimana:
C = kapasitansi (F, Farad) (1 Farad = 1 Coulomb/Volt)
Q = muatan listrik (Coulomb)
V = beda potensial (Volt)
Nilai kapasitansi tidak selalu bergantung pada nilai Q dan V. Besar nilai kapasitansi bergantung pada ukuran, bentuk dan posisi kedua keping serta jenis material pemisahnya (insulator). Nilai usaha dapat berupa positif atau negatif tergantung arah gaya terhadap perpindahannya. Untuk jenis keping sejajar dimana keping sejajar memiliki luasan [A] dan dipisahkan dengan jarak [d], dapat dinotasikan dengan rumus:
C = \epsilon \frac{A}{d}
Dimana:
A = luasan penampang keping (m2)
d = jarak antar keping (m)
\epsilon = permitivitas bahan penyekat (C^2/Nm^2)
Jika antara kedua keping hanya ada udara atau vakum (tidak terdapat bahan penyekat), maka nilai permitivitasnya dipakai \epsilon_0 = 8 \times 10^{-12} \: C^2/Nm^2.
Muatan sebelum disisipkan bahan penyekat (Q_0) sama dengan muatan setelah disisipkan bahan penyekat (Q_b), sesuai prinsip bahwa muatan bersifat kekal. Beda potensialnya dinotasikan dengan rumus:
Mau diskon 40% paket RuangGuru? WA: 0813 7693 4946
Q_0 = Q_b
C_0V_0 = C_bV_b
Kapasitor menyimpan energi dalam bentuk medan listrik. Besar energi [W] yang tersimpan pada dapat dicari menggunakan rumus:
W = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QV = \frac{1}{2}CV^2
Dimana:
W = jumlah energi yang tersimpan dalam kapasitor (Joule)

Rangkaian Kapasitor

Dua kapasitor atau lebih dapat disusun secara seri maupun paralel dalam satu rangkaian listrik. Rangkaian seri memiliki sifat-sifat yang berbeda dengan rangkaian paralel. Berikut diberikan tabel sifat-sifatnya pada rangkaian seri dan paralel.
susunan-rangkaian-kondensator

cara merakit komputer

1. Memasang Processor ke Motherboard

Alangkah baiknya sebelum motherboard dipasang ke casing, terlebih dahulu memasang processor karena akan lebih mudah cara memasangnya. Cara memasang processor ke motherboard yaitu :
  • Kita tentukan dulu posisi pin 1 pada prosessor dan socket prosessor di motherboard, umumnya terletak di pojok yang ditandai dengan tanda titik atau lekukan.
  • Angkat tuas pengunci socket ke atas supaya terbuka
  • Sesuaikan posisi kaki processor dengan lubang socket, kalau sudah lalu tekan processor ke dalam socket sampai rapat.
  • Kunci kembali dengan tuas pengunci.

Cara Merakit Komputer

2. Memasang Motherboard
Untuk memasang Motherboard pada casing yaitu letakkan motherboard pada tray casing dan sesuaikan lubang antara casing dan lubang motherboard, lalu kunci dengan sekrup.

Cara Merakit Komputer

3. Memasang Heatsink
Setelah processor terpasang, lalu pasang heatsink supaya processor tidak panas. Heatsink ini diletakkan diatas processor dan diberi penahan supaya tidak lepas. Sebelumnya lapisi heatsink dengan Gel penghantar panas. Apabila heatsink anda ada kipasnya/fan maka konektor power pada kipas/fan hubungkan ke motherboard.

Cara Merakit Komputer

4. Memasang RAM / Memori
Cara memasang Ram / modul memori yaitu : Buka dulu tuas penguncinya, lalu sesuaikan posisi lekukan pada modul memori dengan lekukan pada slot. Kalau sudah pas lalu tekan dan pasang kembali tuas pengunci RAM / memori.

Cara Merakit Komputer

5. Memasang Power Supply
Biasanya kalau kita membeli casing pasti power supply sudah terpasang. Nah apabila power supply belum terpasang caranya memaangnya yaitu :
  • Letakkan power supply pada tempatnya yang ada dibelakang casing, lalu kunci dengan sekrup.
  • Pasang konektor power dari power supply ke motherboard berikut kabel-kabelnya.

Cara Merakit Komputer

6. Memasang Kabel Motherboard dan Casing
  • Pasang kabel konektor IDE primary dan secondary pada motherboard.
  • Untuk motherboard non ATX, pasang kabel port serial dan pararel pada konektor di motherboard.
  • Pada bagian belakang casing terdapat lubang untuk memasang port tambahan jenis non slot. Buka sekerup pengunci pelat tertutup lubang port lalumasukkan port konektor yang ingin dipasang dan pasang sekerup kembali.
  • Hubungkan kabel konektor mouse dan keyboard pada motherboard.
  • Hubungan kabel konektor yang lainnya seperti LED, speaker internal dan port yang tersedia di casing komputer.

Cara Merakit Komputer

7. Memasang Drive
Untuk memasang drive seperti harddisk, CD-ROM/DVD-ROM caranya yaitu :
  • Masukkan drive dari depan casing. Atur dulu settingan jumper (sebagai master atau slave) pada drive, lalu pasang sekrup supaya drive tidak lepas.
  • Hubungkan konektor kabel IDE ke drive dan konektor di motherboard (konektor primer yang dipakai lebih dulu)
  • Apabila kabel IDE terhubung pada 2 (dua) drive, setting jumpernya yaitu drive pertama disetting sebagai master dan satunya lagi sebagai slave.
  • Dan konektor IDE sekunder pada motherboard dapat dipakai untuk menghubungkan dua drive tambahan.
  • Sambungkan kabel power dari catu daya pada masing-masing drive.

Cara Merakit Komputer

8. Memasang Card Adapter
Untuk Card Adapter yang bisanya dipasang adalah sound, video card, modem dan SCSI adapter. Cara pemasangannya yaitu : masukkan Card Adapter pada slot yang tersedia di motherboard, lalu tekan sampai konektor benar-benar masuk, kemudian beri sekrup sebagai penahan card.

Cara Merakit Komputer

9. Tahap terakhir perakitan komputer
Kalau semua langkah-langkah perakitan komputer sudah selesai, kini tutup dengan casing dan beri sekrup. Hubungkan kabel dari catu daya ke soket dinding dan juga hubungkan konektor monitor ke port video card, konektor kabel keyboard dan konektor mouse ke port mouse.

10. Pemeriksaan Hasil Perakitan Komputer
Setelah komputer selesai dirakit, kita lakukan pemeriksaan dan pengetesan hasilnya dengan program BIOS, caranya yaitu :
  • Nyalakan komputer dan monitor, lihat layar monitor dan juga dengarkan suara dari speaker.
  • Nah program Fost dari Bios ini akan otomatis mendeteksi hardware apa saja yang sudah dipasang pada komputer.
  • Lakukan setting untuk nilai dari kapasitas hardisk dan boot sequence.
  • Kalau sudah lalu simpan hasil settingan dan exit dari setup BIOS, maka komputer meload system operasi dengan urutan pencarian yang disesuaikan dengan settingan boot sequence pada Bios.
  • Masukkan CD Bootable yang berisi sistem operasi pada drive pencarian.

11. Solusi bila terjadi masalah pada hasil perakitan komputer
  • Hidupkan komputer, apabila komputer dan monitor tidak hidup, periksa kabel daya pada colokan listrik sudah terhubung apa belum.
  • Apabila waktu dinyalakan, tampilan layar monitor ngeblank / berwarna hitam, pasti ada kesalahan dan apabila pada CPU terdengar bunyi beep, maka betulkan penempatan RAM / memori pada soket.
  • Apabila card adapter tidak terdeteksi, periksa penempatan card adapter sudah pas apa belum ke slotnya.
  • Apabila LED dari harddisk atau CD menyala terus, periksa konektornya sudah terhubung apa belum.

elektro unissula

Teknik Elektro adalah ilmu yang mempelajari segala sesuatu yang berhubungan dengan tingkah laku elektron sebagai pembawa informasi. Termasuk didalamnya adalah elektonika, listrik dan komputer. Disiplin ilmu ini mempelajari teknologi perancangan suatu sistem maupun sub sistem menggukan piranti elektronis sehingga bermanfaat untuk membantu pekerjaan-pekerjaan yang sulit dilakukan manusia. Disiplin ilmu ini termasuk ilmu yang paling menantang dalam menghadapi perkembangan teknologi tinggi yang sedemikian pesat perkembangannya.
Program studi Teknik Elektro Unissula dimaksudkan untuk mencetak sarjana muslim yang memiliki keahlian dan keilmuan yang tinggi dengan diadasari kepribadian yang baik sebagai seorang muslim. Selain itu para lulusan diharapkan memiliki kemampuan bekerja ataupun melanjutkan pendidikan ke jenjang yang lebih tinggi serta punya motivasi tinggi untuk senantiasa mengembangkan dan mengembangkan keilmuan yang telah dimiliki.
Program studi Teknik Elektro Fakultas Teknologi Industri UNISSULA Terakreditasi BAN-PT/ Peringkat B. dengan konsentrasi pada beberapa bidang :
  • Teknik Tenaga Listrik
  • Teknik Elektronika Kendali
Program studi Teknik Elektro membekali mahasiswanya tidak hanya dengan pengetahuan dan wawasan tentang teknologi namun juga dibekali dengan wawasan tentang keimanan dan ketakwaan, sehingga nantinya diharapkan dapat mengembangkan ilmu pengetahuan dan teknologi sesuai dengan Syariat Islam dan menjadi pakar dan cendekiawan serta kader pemimpin umat untuk mencapai Rahmatan lil ‘alamin. Untuk info lebih detil mengenai Program Studi Teknik elektro, silahkan klik http://elektro.unissula.ac.id/